14 GAS CHROMATOGRAPHY-MASS SPECTROMETRY (GC-MS)	Page 1 of 3
Division of Forensic Science	Amendment Designator:
TRACE EVIDENCE TRAINING MANUAL	Effective Date: 29-March-2004

14 GAS CHROMATOGRAPHY-MASS SPECTROMETRY (GC-MS)

14.1 Introduction to Gas Chromatography-Mass Spectrometry (GC-MS)

14.1.1 Objectives

Through completion of this module the trainee will have developed and demonstrated theoretical knowledge and/or practical skills to:

- Describe the basic theory and draw a basic diagram of the major components of the instrument;
- Describe the capabilities and limitations of the instrument;
- Describe the practical applications of GC-MS;
- Define GC-MS terminology;
- Understand and explain the different autotunes available;
- Evaluate an instrument autotune to approve instrument for casework; and,
- Describe the differences between the library search routines.

14.1.2 Required Readings

- 14.1.2.1 Agilent Technologies. MSD reference collection, computer software, 1999.
- 14.1.2.2 American Society for Mass Spectrometry, What is Mass Spectrometry, Handout, ASMS, 1989.
- 14.1.2.3 HP Student Handbook, MS Fundamentals, 1993, Central Drug Section.
- 14.1.2.4 McLafferty/Turecek, <u>Interpretation of Mass Spectra</u>, 4th edition, University Science Books, 1993, Chapters 1-4.
- 14.1.2.5 Watson, J. Throck, <u>Introduction to Mass Spectrometry (3rd edition)</u>, Lippincott-Raven, New York, 1997, pp. 73-80.

14.1.3 Questions

The trainee will provide written answers to the following questions:

- Draw a schematic diagram for a GC-MS and describe the function of each component.
- Define the following terms
 - o Scan rate
 - o Scan cycle time
 - o Reset time
 - Spectral tilting
 - o Molecular ion
 - o Base peak
 - o Electron ionization
 - o Resolution as it relates to mass spectroscopy
- What is the mass resolution of our instruments?
- Why are vacuum conditions necessary in the ionization source, analyzer and detector of the mass spectrometer?
- What type of vacuum system do our instruments have? Describe the limitations of this vacuum system.
- Describe how a quadrupole mass analyzer works.

14 GAS CHROMATOGRAPHY-MASS SPECTROMETRY (GC-MS)	Page 2 of 3
Division of Forensic Science	Amendment Designator:
TRACE EVIDENCE TRAINING MANUAL	Effective Date: 29-March-2004

- Describe how an electron multiplier works.
- Describe the difference between full mass scans and selected ion monitoring.
- Describe the importance of tuning and explain the data on the daily tune report.
- Briefly explain how the 10-peak and PBM library search routines work.

14.1.4 Practical Exercises

- 14.1.4.1 The trainer will physically show the trainee all of the components of the GC-MS system.
- 14.1.4.2 The trainer will demonstrate the autotunes available and provide discussion on the criteria for acceptance of the daily autotune.
- 14.1.4.3 The trainer will demonstrate and discuss the library search routines.

14.1.5 Evaluation

- 13.1.4.1 The trainer will review the written answers to the questions with the trainee.
- 13.1.4.2 The trainer and the trainee will review and discuss the pertinent points of each of the required readings.
- 13.1.4.3 The trainee will be quizzed orally upon the subject matter.

14.2 Sample Preparation and Data Collection

14.2.1 Objectives

Through completion of this module the trainee will have developed and demonstrated theoretical knowledge and/or practical skills to:

• Prepare and inject samples to include gases and liquids.

14.2.2 Required Readings

14.2.2.1 Trace Evidence Section Standard Operating Procedures for GC-MS.

14.2.3 Questions

The trainee will provide written answers to the following questions:

• Describe differences in the parameters for the analysis of: gases/liquids; strong/weak; and references/standards versus case samples.

14.2.4 Practical Exercises

- 14.2.4.1 The trainee will demonstrate the daily and monthly QC procedures for the GC-MS.
- 14.1.4.2 The trainee will perform the daily QC procedures for the GC-MS for a minimum of one week.
- 14.1.4.3 The trainee will demonstrate headspace and liquid injections.
- 14.1.4.4 The trainee will demonstrate how to set-up the instrument for single as well as autosampler injections including daily QC checks.

14 GAS CHROMATOGRAPHY-MASS SPECTROMETRY (GC-MS)	Page 3 of 3
Division of Forensic Science	Amendment Designator:
TRACE EVIDENCE TRAINING MANUAL	Effective Date: 29-March-2004

14.1.4.5 The trainee will inject samples that are relevant to or a part of their subdiscipline training.

14.2.5 Evaluation

- 14.2.5.1 The trainer will review the written answers to the questions with the trainee.
- 14.2.5.2 The trainer and the trainee will review and discuss the pertinent points of each of the required readings.
- 14.2.5.3 Review of practical exercises.

14.3 Competency Evaluation and Mock Trial

The trainee will use GC-MS when completing their subdiscipline competency test and will defend their results as a part of their mock trial in that subdiscipline.

14.4 GC-MS Operator Trainees

- 14.4.1 The GC-MS operator trainee will demonstrate the ability to perform routine maintenance on the instrument to include as a minimum; cleaning of the source, GC column replacement and basic troubleshooting.
- 14.4.2 The GC-MS operator trainee will demonstrate a greater in-depth working knowledge of the instrument than a GC-MS user in order to provide training to individual users.
- 14.4.3 The GC-MS operator trainee will prepare a presentation which will be presented to a group consisting of at least, qualified trace evidence examiners who use GC-MS. The presentation will, at a minimum, include: drawing a schematic of the instrument; an explanation of the GC-MS components; a discussion regarding different autotune routines, data collection and manipulation, library search routines and Trace Evidence specific applications.

The GC-MS operator trainee will field questions regarding all aspects of their GC-MS training.

14.5 Reading List

- 14.5.1 Agilent Technologies. MSD reference collection, computer software, 1999.
- 14.5.2 American Society for Mass Spectrometry, What is Mass Spectrometry, Handout, ASMS, 1989.
- 14.5.5 HP Student Handbook, MS Fundamentals, 1993, Central Drug Section.
- 14.5.4 McLafferty/Turecek, Interpretation of Mass Spectra, 4th edition, University Science Books, 1993.
- 14.5.5 Trace Evidence Section Standard Operating Procedures for GC-MS.
- 14.5.6 Watson, J. Throck, Introduction to Mass Spectrometry (3rd edition), Lippincott-Raven, New York, 1997.

⋖End